Role of formulation and processing on nutrients and anti-nutrient factors during small scale commercial extruded kibble manufacturing

Stephanie D. Clark, PhD, CVT, PAS, David Perez, BS, Sydney R. McCauley, PhD, PAS, Bradley Quest, DVM, and Shiva Garimella, PhD, CFS, PAS

1BSM Research, BSM Partners LLC, Bentonville, AR, USA

1*Presenting author

Background: Extruded kibble is the most widely used commercial pet food. Concerns regarding grain-free/legume-rich (gf/lg) diets have arisen, including the effects of ingredient composition and small-scale commercial extrusion processes on post-extrusion nutrients and anti-nutrient factors (ANF), specifically phytic acid and lignin.

Hypothesis: We hypothesized that nutrient profiles and ANF of finished kibble were not affected by ingredient composition or size of manufacturing plant.

Materials and Methods: Four new diets were designed to be either gf/lg or grain-inclusive in combination with either high-or-low animal protein (diets 1-4). These diets were manufactured in a small-scale plant. Finished samples were analyzed for AAFCO nutrient profile, heavy metals, toxins, and ANF. Additionally, a finished, grain-inclusive, commercially available product from a large-scale plant was analyzed (diet 5). Statistical analyses were performed using a 2x2 factorial design.

Results: Moisture, protein, fat, fiber, and ash did not change among diets 1-4 (p > 0.05). No change in gelatinized starch was noted between gf/lg diets and grain-inclusive diets (p = 0.2). Grain-inclusive diets (1, 2 and 5) had vomitoxin <0.5 mg/kg, which was not detectable in gf/lg diets (3 and 4). Heavy metals were not detectable, except for cadmium (<0.05 mg/kg) in any diet. ANF were not detectable in diets 1-4; however, diet 5 had lignin detectable at 2.2% (N <0.5%) on a dry matter basis (finished product). Biogenic amine index was <2.0 in diets 1-4 and 8.8 in diet 5 (<2, acceptable, >10, advanced decomposition).

Conclusions: These preliminary results suggest that gf/lg ingredient profiles do not negatively impact macronutrients during extrusion process. Both gf/lg diets and grain-inclusive diets had >90% starch gelatinization, suggesting comparable digestibility. In conclusion, results suggest that diets from small-scale plants are not at a higher risk for abnormal ANF or nutrient compositions, which may affect nutrient absorption.